PROJECT OVERVIEW
The Rail Tie Wind Project (Project) is a utility-scale wind energy generation facility being developed by ConnectGen Albany County LLC (ConnectGen) in Albany County, Wyoming.

- **Location:** Near Tie Siding, Project Area is bisected by U.S. Highway 287
- **Nameplate capacity:** 504 megawatts
- **Project area:** 26,000 acres of private and state land
- **Interconnection:** Ault-Craig 345-kV transmission line jointly owned by Western Area Power Administration, Tri-State, and Platte River Power Authority

CONNECTGEN OVERVIEW
ConnectGen is an independent renewable energy company focused on the development of greenfield wind, solar, and energy storage projects across the United States. ConnectGen is headquartered in Houston, Texas, and backed by Quantum Energy Partners.

GOALS AND OBJECTIVES
ConnectGen's purpose for the proposed Project is to respond to increasing market demand for sources of renewable energy. Demand for renewable energy is primarily driven by the rapidly falling costs of wind- and solar-generated electricity and state clean energy mandates. Many western utilities have announced ambitious plans to add large amounts of renewable energy to their portfolios in the coming years.

FACILITY DESCRIPTION
The proposed Project would consist of 84 to 151 wind turbines with a combined energy generating capacity of up to 504 megawatts of electricity, enough to power more than 180,000 homes. In addition to wind turbines, the Project is anticipated to include:

- Access roads
- Collection lines
- Substations
- Interconnection switchyard
- 345-kV transmission gen-tie line
- Operations and maintenance building
- Meteorological towers
- Construction laydown yards

Wind turns the generator, creating power

The power is collected and the voltage is adjusted through transformers in substations

Power is delivered to the grid through the switchyard and interconnection with the existing transmission system
PROJECT LOCATION

RAIL TIE WIND PROJECT

PROJECT ATTRIBUTES

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL OUTPUT CAPACITY</td>
<td>504 MW</td>
</tr>
<tr>
<td>PROJECT AREA</td>
<td>26,000 ACRES</td>
</tr>
</tbody>
</table>

Turbine Generators

- **Output**: 3 MW–6 MW
- **Count**: 84–151
- **Overall Height**: up to 675 feet
- **Nacelle Height**: up to 410 feet
- **Blade Length**: up to 272 feet

Collection Lines

- **Voltage**: 34.5 kV
- **Length**: 80 miles, primarily underground; if overhead, 50- to 80-foot-tall structures

Substations

- **Count**: 2 substations – 345 kV each
- **Area**: 5 acres each

Transmission Lines

- **Voltage**: 345 kV
- **Length**: 4 miles, up to 125 feet tall

Interconnection Switchyard

- **Location**: 1 site – 345 kV
- **Area**: 8 acres

Operations & Maintenance Facility

- **Type**: 7,000-square-foot building
- **Area**: 5 acres

Access Roads

- **Type**: All-weather; new, improved, and existing
- **Length**: 60 miles, 20-foot-wide travel surface

Meteorological Towers

- **Count**: 3 – self-supported lattice-mast
- **Height**: 105 meter tall

Construction Laydown Yards

- **Count**: 2 – temporary
- **Area**: 15 acres each
PROJECT SITING
RAIL TIE WIND PROJECT

OPPORTUNITIES AND CONSTRAINTS

ConnectGen considered numerous factors to determine the most suitable location for the Rail Tie Wind Project. The factors listed below were the most important to selection of the Rail Tie Wind Project site.

- Access to high-quality wind resource (10 meters-per-second at turbine hub height)
- Proximity to existing high-voltage transmission capacity
- Minimization of impacts to sensitive wildlife and habitats
- Avoidance of protected lands
- Interest from local landowners and compatible land use
- Access to highways for materials delivery
- Constructability of terrain

ALBANY COUNTY WIND ENERGY SITING REGULATIONS

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>SETBACK DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporated municipality</td>
<td>1 mile</td>
</tr>
<tr>
<td>Platted subdivision</td>
<td>5.5 times total turbine height</td>
</tr>
<tr>
<td>Residential dwelling or occupied structure</td>
<td>5.5 times total turbine height</td>
</tr>
<tr>
<td>Highway right-of-way</td>
<td>0.25 mile</td>
</tr>
<tr>
<td>State parks and wildlife refuges</td>
<td>0.25 mile</td>
</tr>
<tr>
<td>Third-party transmission lines and communication towers</td>
<td>1.1 times total turbine height</td>
</tr>
<tr>
<td>Adjacent property lines of non-participating landowners</td>
<td>1.1 times total turbine height</td>
</tr>
<tr>
<td>Public roads and railroads</td>
<td>1.1 times total turbine height</td>
</tr>
</tbody>
</table>
WIND ENERGY ENGINEERING
RAIL TIE WIND PROJECT

WIND TURBINES
The major component of a wind project is the wind turbines. As turbine technology continues to improve, the industry is trending toward larger turbines with higher nameplate capacities. This means each individual turbine can generate more energy, so fewer turbines overall are needed for a wind project.

ConnectGen is considering a range of turbine models with nameplate capacities between 3 MW and 6 MW. Depending on which turbine model is selected, the total 504-MW Project will be composed of 84 to 151 individual turbines. ConnectGen will select the turbine model based on final engineering and design, turbine availability from manufacturers, and ongoing wind resources studies.

To comply with Federal Aviation Administration and Albany County, Wyoming, regulations, turbines would require aircraft warning lights and would be nonreflective white or gray in color.

PROJECT CONSTRUCTION
Construction of the proposed Project would occur over approximately 18 months, depending on the final size of the Project.

The expected sequence of construction activities is listed below (activities 3-7 would occur simultaneously).

1 - Mobilization
2 - Access roads and laydown areas
3 - Substation construction
4 - Operations and maintenance building construction
5 - Transmission line construction
6 - Foundations
7 - Turbine installation
8 - Commissioning and acceptance testing
THE NEPA PROCESS
RAIL TIE WIND PROJECT

WHAT IS NEPA?
The National Environmental Policy Act (NEPA) of 1969 and associated regulations requires federal agencies to consider the potential effects of major federal actions on the human and natural environments.

To comply with NEPA, WAPA prepares environmental impact statements (EIS) to analyze and disclose the impacts of major federal actions.

WAPA’S ROLE
WAPA is responding to ConnectGen’s request for interconnection with WAPA’s high-voltage transmission grid. The interconnection and the associated action of constructing and operating the proposed wind farm raises the proposed Project to a major federal action under NEPA.

If WAPA’s decision is to approve the interconnection request, an interconnection and interconnection switchyard would be constructed. WAPA would then own, operate, and maintain the 345-kV interconnection and interconnection switchyard located adjacent to the Ault-Craig transmission line.

SWCA Environmental Consultants is providing support to WAPA in the preparation of the EIS for the proposed Project. SWCA is also managing public involvement and public comments for the EIS process. Publication of the Draft EIS is anticipated for the fourth quarter of 2020.

PUBLIC INVOLVEMENT
There are several opportunities in the NEPA process designated specifically for individuals, agencies, tribes, and organizations to provide comments. WAPA will accept input from any of these entities at any time during the NEPA process.

ENVIRONMENTAL IMPACT STATEMENT PROCESS

= Public Involvement Opportunities

- Publish Notice of Intent
- 30-Day Scoping Period
- Publish Draft EIS
- 30-Day Review of Draft EIS
- Publish Final EIS
- 30-Day Availability Period
- Record of Decision
The EIS will consider potentially affected resources in the Project area, including those listed below.

- Agriculture
- Air Quality and Climate Change
- Biological Resources, including Endangered Species Act
 Section 7 compliance
- Cultural Resources, including National Historic Preservation Act
 Section 106 compliance
- Environmental Justice
- Geological Soils
- Hazardous Material
- Health and Safety
- Land Use and Recreation
- Mineral Resources
- Noise
- Paleontological Resources
- Recreation
- Socioeconomics
- Transportation
- Visual Resources
VISUAL SIMULATIONS
RAIL TIE WIND PROJECT

TIE SIDING KEY OBSERVATION POINT

Baseline Condition

Conceptual Design with 3 MW Turbines

Conceptual Design with 6 MW Turbines
VISUAL SIMULATIONS
RAIL TIE WIND PROJECT

THE BUTTES KEY OBSERVATION POINT

Baseline Condition

Conceptual Design with 6 MW Turbines, Daytime View

Conceptual Design with 6 MW Turbines, Nighttime View
VISUAL SIMULATIONS
RAIL TIE WIND PROJECT

I-80 KEY OBSERVATION POINT

Baseline Condition

Conceptual Design with 3 MW Turbines

Conceptual Design with 6 MW Turbines
PUBLIC COMMENTS
RAIL TIE WIND PROJECT

WHERE TO COMMENT
1 - Provide an email comment to the Project email address: RailTieWind@wapa.gov
2 - Submit a comment form here or take a comment form for mailing
3 - Mail comments to:
 Mark J. Wieringa
 NEPA Document Manager
 Rail Tie Wind Project
 Western Area Power Administration
 Headquarters Office, A9402
 P.O. Box 281213
 Lakewood, CO 80228-8213

WHEN TO COMMENT
1 - During the scoping meeting or during the public scoping period
2 - During the Draft EIS public review and comment period or at the Public Hearing

WAPA will accept and consider public comments at any point during the NEPA process.

EFFECTIVE COMMENTS
1 - Are specific to the proposed Project as presented
2 - Relate to the scope of the analysis, the severity of potential impacts, or present potential alternatives for consideration in the EIS
3 - Provide local knowledge of resources, sensitive areas, or other information that could influence project design or be considered in impact analysis

TYPES OF COMMENTS
1 - Bring up questions to be addressed by impact analysis
2 - Recommend scientifically defensible reference materials for consideration in the EIS
3 - Identify alternatives to the proposed action that are technically and economically feasible