Western Area Power Administration (WAPA) generated a total of 14,541 gigawatt-hours (GWh) during October through April of fiscal year 2020, or 110 percent of the average. Actual purchase power data is currently available from October through March for all of WAPA’s Regions, and during this period total purchase power was 1,295 GWh and total purchase power expenses were $34,576,653, which equates to $26.70 per MWh.

The following pages indicate WAPA’s Regional snowpack, lake/reservoir inflow and storage, generation, and purchase power expenses. Snowpack is reported as snow water equivalent, which is the depth of water that theoretically would result if the entire snowpack is melted instantaneously.

The monthly purchase power numbers indicated herein are used by WAPA’s Regions as a forecasting tool, and therefore they do not reflect energy imbalance transactions and other such information that cannot be forecasted. Furthermore, the purchase power numbers have not been verified for financial auditing purposes. Consequently, these numbers will vary from those reported in WAPA’s year-end financial statements, and the latter should be considered the definitive source for WAPA’s purchase power data.
Colorado River Storage Project

Lake Powell’s elevation was 3,599 feet at the end of April, about 101 feet below the maximum reservoir level and about 109 feet above the minimum generation level. The storage volume for Lake Powell was 11.7 million acre-feet (MAF) at the end of April, or about 48 percent of capacity.

Weather and Other Conditions
May forecasted water year 2020 inflow decreased by about 1.0 MAF from the April Forecast to about 7.4 MAF, or about 68 percent of average; however, there is still significant uncertainty around this forecast. The official WY 2020 annual release for Lake Powell will be 8.23 MAF, and current forecasts predict a 9.0 MAF annual release for WY 2021.
Desert Southwest Region

Lake/Reservoir Levels
Lake Mead’s elevation was 1,096 feet at the end of April, about 123 feet below the full storage level and about 146 feet above the minimum generation level. Lake Mead’s elevation started WY 2020 at a minimum elevation of 1,083 feet in October and its elevation peaked at 1,099 feet in March.

Weather and Other Conditions
The Desert Southwest Region’s (DSWR) hydrology is mostly dependent on the Colorado River Basin snowpack and precipitation above Lake Powell. The precipitation is currently 84 percent of average and the snowpack is 68 percent of median.

Note: DSWR’s projected dry and most probable generation data are reported from studies conducted by the U.S. Bureau of Reclamation.
Rocky Mountain Region

Lake/Reservoir Content
Reservoir inflows were 96 percent of average at the end of April.

Weather and Other Conditions
Hydrologic conditions for the Loveland Area Projects (LAP) area can vary from one river basin and watershed to another. LAP is currently drought free. The snowpack is 90 percent of average in Colorado and 96 percent of average in Wyoming. The latest National Weather Service forecast indicates June through August temperatures have slightly higher chances to be above average in Wyoming and Colorado, and precipitation will be slightly below average for all of LAP. Spring generation in the Colorado River Basin is forecast to be average in June through August as continued run off takes place. Spring generation in the North Platte Basin and Big Horn Basin is forecasted to be average.

Note: The Rocky Mountain Region’s (RMR) most recent reported actual generation and purchase power data are provisional values.
Sierra Nevada Region

Lake/Reservoir Inflow
(Thousand Acre-Feet)

Lake/Reservoir Content
(Million Acre-Feet)

Generation (MWh)

Purchase Power
(MWh)

Purchase Power Expenses (Dollars)

<table>
<thead>
<tr>
<th>Snowpack (Inches in Snow Water Equivalent)</th>
<th>Lake/Reservoir Inflow</th>
<th>Lake/Reservoir Content</th>
<th>Generation (MWh)</th>
<th>Purchase Power</th>
<th>Purchase Power Expenses (Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>Actual</td>
<td>Average</td>
<td>Actual</td>
<td>Projected Dry</td>
<td>Most Probable</td>
</tr>
<tr>
<td>Oct 19</td>
<td>N/A</td>
<td>335.00</td>
<td>349.00</td>
<td>5.51</td>
<td>7.84</td>
</tr>
<tr>
<td>Nov 19</td>
<td>22.22</td>
<td>2.00</td>
<td>381.00</td>
<td>356.00</td>
<td>5.47</td>
</tr>
<tr>
<td>Dec 19</td>
<td>27.27</td>
<td>9.00</td>
<td>960.00</td>
<td>692.00</td>
<td>5.84</td>
</tr>
<tr>
<td>Jan 20</td>
<td>27.91</td>
<td>12.00</td>
<td>844.00</td>
<td>736.00</td>
<td>6.19</td>
</tr>
<tr>
<td>Feb 20</td>
<td>28.21</td>
<td>11.00</td>
<td>1,533.00</td>
<td>378.00</td>
<td>6.81</td>
</tr>
<tr>
<td>Mar 20</td>
<td>29.63</td>
<td>16.00</td>
<td>1,574.00</td>
<td>514.00</td>
<td>7.52</td>
</tr>
<tr>
<td>Apr 20</td>
<td>26.67</td>
<td>8.00</td>
<td>1,452.00</td>
<td>899.00</td>
<td>7.93</td>
</tr>
<tr>
<td>May 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actual generation as a percentage of average: 94.0%
Cost per MWh: $13.71

Lake/Reservoir Content
As of April 30, reservoir storage for the water year was 103 percent of the 15-year average for Trinity, 98 percent for Shasta, 94 percent for Folsom, and 122 percent for New Melones. Accumulated inflow for the same date was 42 percent of the 15-year average for Trinity, 58 percent for Shasta, 52 percent for Folsom, and 65 percent for New Melones.

Weather and Other Conditions
February only had 0.02 inches of precipitation for the month, which is the driest February on the index going back to 1921. March precipitation was 6.29 inches or 90 percent of its average, after such a dry February. April precipitation was 2.81 inches or 71 percent of its average while the snowpack ended at 8 inches or 30 percent of the April 1st peak. Based upon April 1st conditions, the Sacramento River Index forecast for 50 percent exceedance at 9.2 is "critical" and the 90 percent exceedance at 8.1 is also "critical."

Note: The Sierra Nevada Region’s (SNR) average generation is based upon long-term modeling done for its "Green Book." SNR does not project purchase power expenses for dry conditions, and its most probable expenses are based upon term purchases of 35 to 65 percent of projected power needs, with the difference being left to day-ahead markets after project pumping and generation have been scheduled.
Upper Great Plains Region

Lake/Reservoir Content
As of May 20, the active conservation pools for the Canyon Ferry and Yellowtail Dams were 75.3 percent and 73.9 percent full, respectively.

Weather and Other Conditions
The April runoff was 159 percent of normal. The Missouri River Basin mountain snowpack normally peaks near April 15. Snowpack reports show 94 percent of average snow water equivalent above Fort Peck and 86 percent of average in the Fort Peck to Garrison reach. The U.S. Drought Monitor shows larger areas of the upper Basin being impacted by abnormally dry conditions, primarily in the far south-eastern regions of Montana, and largely the western-half of North Dakota for our service area. The 90- to 180- day precipitation averages outlook are normal to slightly above normal precipitation across our system.

Note: The Upper Great Plains Region reports its 50 percent share of generation from Yellowtail Dam, and RMR reports the snowpack, inflow, content, and remaining share of generation. Asterisks indicate that actual purchase power data is not available for the month, and so the projected dry and most probable purchase power expenses are not included for that month in order to allow for a meaningful comparison between the total amounts.